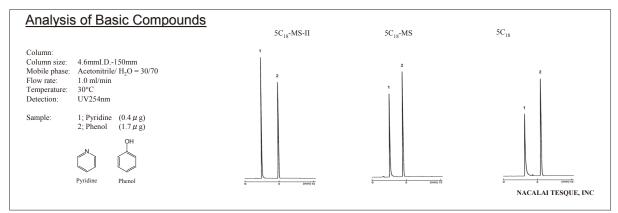
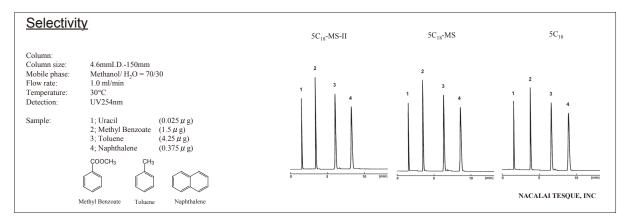

1) New-Type COSMOSIL (5C₁₈-MS-II) vs. Old-Type COSMOSIL (5C₁₈ and 5C₁₈-MS)

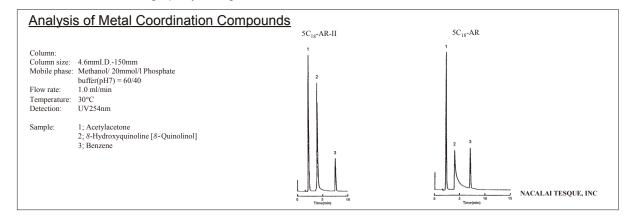

Analysis of Metal Coordination Compounds

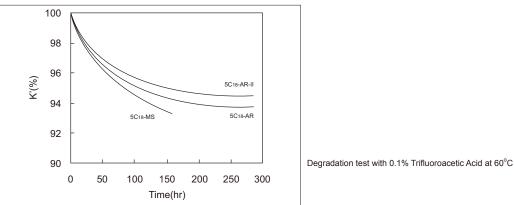
Metal coordination compounds, (e.g., oxine-copper) were not eluted from COSMOSIL 5C18 because its silica gel contains a high level of metal impurities. COSMOSIL 5C18-MS and 5C18-MS-II can separate the same metal coordination compounds because they are packed with high-purity (99.99%) silica gel.


Analysis of Basic Compounds

COSMOSIL 5C₁₈-MS-II shows better performance for basic compounds than COSMOSIL 5C₁₈-MS because the new product is treated with improved endcapping.

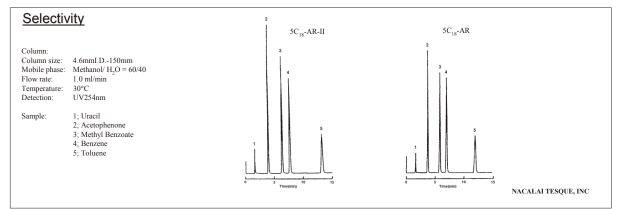
Selectivity


There is little difference between COSMOSIL 5C₁₈, 5C₁₈–MS and 5C₁₈–MS–II regarding selectivity. The same analytical conditions used for the old columns can be transferred to COSMOSIL 5C₁₈–MS–II without any modification.


2) New-Type COSMOSIL (5C18-AR-II) vs. Old-Type COSMOSIL (5C18-AR)

Analysis of Metal Coordination Compounds

COSMOSIL 5C₁₈-AR-II shows better separation for metal coordination compounds (e.g., *8*-Quinolinol) than COSMOSIL 5C₁₈-AR because of the high-purity silica gel.


Acid Resistance

COSMOSIL 5C18-AR-II shows superior acid resistance compared to 5C18-AR.

Selectivity

The selectivity for non-dissociative organic compounds on COSMOSIL 5C₁₈-AR-II and COSMOSIL 5C₁₈-AR is identical because the carbon content of both columns is the same.

COSMOSIL 5C₁₈–MS–II and COSMOSIL 5C₁₈–AR–II are available in multiple gel lots to support method validation. We recommend using the newest COSMOSIL products for new applications.