Sialic Acid Related Products

Substrates

N-Acetyl-D-mannosamine, Monohydrate [ManNAc]

Origin	: Prepared by enzymatic hydrolysis of N-Acetylneuraminic Acid, and purified by	crystallization.
Formula	: C8H15NO6 • H2O (MW : 239.2)	
Appearance	: White amorphous powder	HO NHCOCH
Purity	: More than 99% by HPLC.	
	Homogeneous by thin layer chromatographic analysis.	HO
Storage	: Stable when stored on desiccated condition at 5°C.	No Solution
References	: 1) K. Hotta, M. Kurokawa and S. Isaka, <i>Seikagaku</i> (in Japanese), 45 (10), 911-915 (1973) 2) S. Blayer, J. M. Woodley, M. J. Dawson and M. D. Lilly, <i>Biotechnology and Bioengineering</i> , 66 (2), 1	31-136 (1999)

N-Glycolylneuraminic Acid [NeuGc; Neu5Gc; NeuNGc]

Origin	: Prepared by chemo-enzymatic synthesis from glucosamine and	pyruvic acid.	
Formula	: C11H19NO10 (MW : 325.27)		
Appearance	: White crystalline powder		
Purity	: More than 98% by HPLC	HO	1
Storage	: Stable when stored on desiccated condition below -20°C.	HOH2COCHN HO	
		HU	

2,3-Dehydro-2-deoxy-N-acetylneuraminic Acid [NeuAc2en; NeuNAc2en; Neu5Ac2en]

Origin	: Prepared by chemical synthesis from N-acetylneuraminic acid.
	Purified by column chromatography and crystallization.
Formula	: C11H17NO8 (MW : 291.25)
Appearance	: White crystalline powder
Purity	: More than 95% by HPLC
Use	: Neuraminidase (sialidase) inhibitor
Storage	: Stable when stored on desiccated condition at -20°C.

N-Acetylneuraminic Acid [NANA; Sialic Acid; NeuAc]

Origin	: Prepared by enzymatic hydrolysis of Colominic Acid ¹), or enzymatic s Pyruvic Acid. ²) Purified by ion-exchange column chromatography and crys	ynthesis from <i>N</i> -Acetylglucosamine and tallization.
Formula	: C11H19NO9 (MW : 309.27)	
Appearance	: White crystalline powder	
Purity	: More than 99% by colorimetric determination and HPLC	HO LOW COOH
Uses	: Authentic specimen of the highest purity, substrate for NANA Aldolase and starting material for preparing NANA derivatives.	AcHN HO
Storage	: Stable for one year when stored on desiccated condition at 5°C.	
References	: 1) Y. Uchida, Y. Tsukada and T. Sugimori, <i>Biochim. Biophys. Acta.</i> , 350 , 425 (1974) 2) I. Maru, J. Ohnishi, Y. Ohta, and Y. Tsukada, <i>Carbohydr. Res.</i> , 306 , 575 (1998)	

Cytidine-5'-monophospho-*N*-acetylneuraminic Acid, Disodium Salt [CMP-Neu5Ac · 2Na]

Origin	: Prepared by enzymatic synthesis from <i>N</i> -Acetylneuraminic Acid and CTP. Purified by ion-exchange column chromatography and lyophilization.	
Formula	: C20H29N4O16PNa2 (MW : 658)	
Appearance	: White lyophilized powder	ONa
Purity	: More than 97% by HPLC	0-P-0-0
Storage	: Stable when stored on desiccated condition below -20°C.	HO HO COONS

HO HO HO ACHN HO

-COOH

Uridine-5'-diphosphoglucose, Disodium Salt

Formula	: C15H22N2O17P2Na2 (MW : 610.3)
Appearance	: White crystalline powder
Purity	: More than 98% (Moisture : approx. 7%)
Storage	: Stable when stored on desiccated condition at 5°C.

Uridine-5'-diphosphoglucuronic Acid, Trisodium Salt

Formula	: C15H19N2O18P2Na3 (MW : 646.3)
Appearance	: White crystalline powder
Purity	: More than 98% (Moisture : approx. 12%)
Storage	: Stable when stored on desiccated condition at $5^{\rm o}{\rm C}$

Enzymes

*N***-AcetyIneuraminic Acid Aldolase** *N*-AcetyIneuraminate Pyruvate Lyase [EC 4.1.3.3]

Origin	: Escherichia coli
Reaction	: N-Acetylneuraminate 🛱 N-Acetyl-D-mannosamine + Pyruvate
Appearance	: White amorphous powder
Activity	: More than 30 units/mg protein
Unit definition	: One unit is the amount of enzyme required to liberates 1 µmol of <i>N</i> -Acetylmannosamine (or Pyruvic Acid) per minute at pH 7.7 at 37°C, using <i>N</i> -Acetylneuraminic Acid (NANA) as a substrate.
Storage	: Stable for one year when stored below 5° C. For prolonged storage, keep at -20°C.
Contaminant	: Free from NADH oxidase
Properties 1) 2):	
Molecular weight	Approx. 98,000 Da (gel filtration)
Optimum pH	7.5 ~ 8.0
pH stability	6.0 ~ 9.0
Thermal stability	below 65°C (pH 7.0, 20 min)
Substrate specificity	N-Glycolvlneuraminic Acid (NGNA) is cleaved as well as NANA. Km = 3.6 mM (NANA), 4.3 mM (NGNA)
Uses	: Enzymatic determination of Sialic Acid and enzymatic syntheses of novel Sialic Acid derivatives.
References	1) Y. Uchida, Y. Tsukada and T. Sugimori, <i>J. Biochem.</i> , 96 , 507 (1984)
	2) Y. Ohta, M. Shimosaka, K. Murata, Y. Tsukada and A. Kimura, Appl. Microbiol. Biotechnol., 24, 386 (1986)

Neuraminidase (Sialidase) Acylneuraminyl Hydrolase [EC 3.2.1.18]

Origin Reaction Appearance Activity Unit definition	 : Arthrobacter ureafaciens : Sialyl compound→Sialic Acid + Asialocompound : White amorphous powder : More than 80 units/mg protein for <i>N</i>-Acetylneuraminyllactose (NANA-lactose) : One unit is the amount of enzyme required to liberate 1 µmol of <i>N</i>-Acetylneuraminic Acid (NANA) per minute at pH 5.0 at 37°C.
Storage Contaminations	: Stable for one year when stored below 5°C. For prolonged storage, keep at -20°C. : Enzyme activities mentioned below cannot be detected. ¹⁾ Protease, <i>N</i> -Acetylneuraminic Acid Aldolase, Glycosidase such as α -Glucosidase, β -Glucosidase, α -Galactosidase, β -Galactosidase, α -Mannosidase, α -Fucosidase, <i>N</i> -Acetyl- α -glucosaminidase, <i>N</i> -Acetyl- β -glucosaminidase, <i>N</i> -Acetyl- α -mannosaminidase and <i>N</i> -Acetyl- β -mannosaminidase.
Properties ^{2) 3)} : Molecular weight Optimum pH pH stability Thermal stability Substrate specificity	 Approx. 52,000 Da, 66,000 Da and 88,000 Da (gel filtration, SDS-PAGE) 4.5 ~ 5.5 (NANA-lactose as a substrate) 4.5 ~ 9.5 below 60°C (pH 5.0, 20 min) The α-ketosidic linkage of <i>N</i>-Glycolylneuraminic Acid (NGNA) can be hydrolyzed as well as that of NANA. This enzyme cleaves α(2→3), α(2→6) and α(2→8) linkages of <i>N</i>-Acetylneuraminic Acid in glycoconjugates. The acivity is independent on Ca²⁺ and is not inhibited by EDTA, which is in striking contrast to <i>Vibrio cholerae</i> Neuraminidase,
References	 and is not or slightly inhibited by inhibitors such as Monoiodoacetate, <i>p</i>-Chloromercuribenzoate and HgCl₂, which is in striking contrast to <i>Clostridium perfringens</i> Neuraminidase. 1) Y. Uchida, Y. Tsukada and T. Sugimori, <i>J. Biochem.</i>, 82, 1425 (1977) 2) Y. Uchida, Y. Tsukada and T. Sugimori, <i>J. Biochem.</i>, 86, 1573 (1979), 3) Y. Ohta, Y. Tsukada and T. Sugimori, <i>J. Biochem.</i>, 106, 1086 (1989)

3α-**Hydroxysteroid Dehydrogenase 3**α-Hydroxysteroid: NAD(P)+ Oxidoreductase [EC 1.1.1.50]

Origin	: Pseudomonas testosteroni
Reaction	: 3α-hydroxysteroid + NAD(P) ⁺ ⇒ 3-Oxosteroid + NAD(P)H+H ⁺
Appearance	: White amorphous powder
Activity	: More than 90 units/mg protein
Unit definition	: One unit is the amount of enzyme required to oxidize 1 µmol of Androsterone as a substrate per minute in the presence of NAD at pH 8.9 at 25°C.
Storage	: Stable for one year when stored below 5°C and also stable at room temperature for at least one week. For prolonged storage, keep at -20°C.
Contaminants	: Malate Dehydrogenase < 0.01% Lactate Dehydrogenase < 0.01% Alcohol Dehydrogenase < 0.01%
Properties :	p-nyuloxysteroid denyulogenase < 0.5 %
Molecular weight Optimum pH Optimum temperature pH stability Thermal stability Michaelis constant	Approx. 37,000 Da 10.2 ~ 10.5 50°C 6.0 ~ 9.5 (30°C, 17 hr) below 50°C (pH 7.2, 10 min) 6.7x10- ⁶ M (Androsterone) 8.3x10- ⁶ M (Na-cholate)
	6.7x10-5 M (NAD)
Uses	: Determination of bile acids

NADH Oxidase

Origin	: Bacillus licheniformis
Reaction	: NADH + H ⁺ + O ₂ \Rightarrow NAD ⁺ + H ₂ O ₂
Appearance	: White amorphous powder
Activity	: More than 50 units/mg protein
Unit definition	: One unit is the amount of enzyme required to oxidize 1 µmol of NADH per minute at pH7.0 at 30°C.
Storage	: Stable for one year when stored below 5°C and also stable at room temperature for at least one week. For prolonged storage, keep at -20°C.
Contaminants	: Sometimes, trace amount of catalase might be detected. Therefore, the addition of 10 mM NaN ₃ into the reaction
Properties :	mixture is recommended when the complete elimination of catalase is needed.
Molecular weight	Approx. 240,000 Da
Optimum pH	6.5 ~ 7.5
Optimum temperature	45°C
pH stability	7.0 ~ 8.5
Thermal stability	below 30°C (pH 7.5, 10 min) and below 40°C (in the coexistence of 0.1% bovine serum albumin,pH 7.5,10 min)
Michaelis constant	3.2x10 ⁻⁵ M (NADH), 6.7x10 ⁻⁶ M (FAD)
Substrate specificity	: In the absence of added FAD both NADH and NADPH are oxidized equally, but by the addition of FAD (about 30 μM) to reaction mixture the reaction velocity to NADH is accelerated about 20 ~ 30 times in contrast to 2 ~ 3 times of NADPH. Accordingly, the substrate specificity of NADH is about 10 times larger than that of NADPH in the presence of added FAD.

Ordering Information

Substrates				
Product Name	Grade	Storage	Product No.	PKG Size
N-Acetyl-D-mannosamine Monohydrate	SP	R	05425-84	10 g
N-Glycolylneuraminic Acid	SP	F	05435-54	50 mg
2,3-Dehydro-2-deoxy-N-acetylneuraminic Acid	SP	F	05457-74	5 mg
			05457-32	25 mg
N-Acetylneuraminic Acid [NANA, Sialic Acid]	SP	R	08371-36	10 g
			08371-94	100 g
<i>N</i> -Acetylneuraminic Acid, dimer(α ,2 \rightarrow 8) [DP2]	SP	F	00640-46	100 mg
<i>N</i> -Acetylneuraminic Acid, trimer(α ,2 \rightarrow 8)[DP3]	SP	F	00641-52	25 mg
<i>N</i> -Acetylneuraminic Acid, tetramer(α ,2 \rightarrow 8)[DP4]	SP	F	00642-42	25 mg
<i>N</i> -Acetylneuraminic Acid, pentamer(α ,2 \rightarrow 8)[DP5]	SP	F	00643-74	5 mg
			00643-32	25 mg
<i>N</i> -Acetylneuraminic Acid, hexamer(α ,2 \rightarrow 8)[DP6]	SP	F	00644-22	25 mg
Cytidine-5'-monophospho-N-acetylneuraminic Acid Disodium Salt	SP	F	10432-24	10 mg
Uridine-5'-diphosphoglucose Disodium Salt	GR	R	36001-64	100 mg
			36001-51	1 g
Uridine-5'-diphosphoglucuronic Acid Trisodium Salt	GR	R	36002-54	100 mg
			36002-41	1 g

Ordering Information

Enzymes

Product Name	Grade	Storage	Product No.	PKG Size
N-Acetylneuraminic Acid Aldolase	SP	F	00628-84	10 units
Neuraminidase from Arthrobacter ureafaciens, highly purified	SP	R	24229-61	1 unit
			24229-74	5 units
3α-Hydroxysteroid Dehydrogenase from <i>Pseudomonas testosteroni</i>	GR	R	18949-34	10 units
			18949-76	50 units
NADH Oxidase from Bacillus licheniformis	GR	F	23626-94	5 units
			23626-52	25 units

(Storage) R = Refrigerator, F= Freezer

For research use only, not intended for diagnostic or drug use.

NACALAI TESQUE, INC. Nijo Karasuma, Nakagyo-ku, Kyoto 604-0855, JAPAN TEL :+81-(0)75-251-1730 FAX : +81-(0)75-251-1763 Website : www.nacalai.com E-mail : info.intl@nacalai.com