Experiment Protocol 109

Immobilization of ligands (alkyne structure compounds) on azide beads using click chemistry reaction

For screening, you need, first of all, to optimize the amount of immobilization of ligands on beads. You can change the amount of immobilization of ligands by changing the concentration of ligands. This experiment protocol shows a method to immobilize ligands at four various concentrations, i.e. $0\mu M$, $5\mu M$, $25\mu M$, and $125\mu M$ when immobilizing ligands on azide beads

1. Materials

1.1 Beads and Ligands (Compounds)

- · Azide beads (TAS8848N1160):10mg (Functional groups:Approx. 100nmol/mg)
- · Ligands: Approx. 0.1mg

1.2 Reagents

- · t-butyl alcohol (t-BuOH) 12mL
- · Dimethylsulfoxide (DMSO) 3mL
- · Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine(TBTA) M.W. 530.63 2.7mg
- · Copper(II)sulfate(CuSO4) M.W. 159.61 16mg
- · (+)-Sodium L-ascorbate M.W. 198.11 20mg
- · Methanol (MeOH) 4mL

1.3 Apparatus

- · Micro centrifuge · Micro tube mixer (TOMY MT-360, etc.)
- Ultrasonic dispersing device
 We have performed operation checks with an ultrasonic homogenizer: VP-15S with a cup horn
 (TAITEC), or an ultrasonic dispersing device: TA4905 (Tamagawa Seiki).

2. Method

2.1 Outline

The following is a schematic view of ligand immobilization. Refer to the next section 2.2 "Procedures" for details.

Ligand immobilized beads

2.2 Preparation of solutions

- 1) Prepare 15mL of t-BuOH/DMSO solution by mixing 12mL of t- BuOH with 3mL of DMSO(t-BuOH: DMSO = 4:1)
- 2) Dissolve ligands (compounds) in t-BuOH/DMSO solution, and prepare 200 μ L of 500 μ M ligand solution.
- 3) Dissolve 2.7mg of TBTA in 1mL of t-BuOH/DMSO solution, and prepare 1mL of 5mM TBTA solution. Add 190 μ L of t-BuOH/DMSO solution to 10 μ L of 5mM TBTA, and prepare 200 μ L of 250 μ M TBTA solution.
- 4) Dissolve 16mg of CuSO₄ in 1mL of ultrapure water, and prepare 1mL of 100mM CuSO₄ solution. Add 190 μ L of ultrapure water to the 10 μ L of 100mM CuSO₄ solution, and prepare 200 μ L of 5mM CuSO₄ solution.

Experiment Protocol 109

- Dissolve 20mg of (+)-Sodium L-ascorbate in 1mL of ultrapure water, and prepare 1mL of 100mM (+)-Sodium L-ascorbate solution. Add 190 μ L of ultrapure water to 10 μ L of the 100mM (+)-Sodium L-ascorbate solution, and prepare 200 μ L of 5mM (+)-Sodium L-ascorbate solution.
- 6) Prepare 8mL of tBuOH/DMSO/ultrapure water solution by mixing 4mL of the tBuOH/DMSO solution prepared in the above 1) with 4mL of ultrapure water. (tBuOH/DMSO solution: ultrapure water = 1:1)

2.3 Ligand immobilization

- 1) Add 2.5 mg of azide beads into each of four micro-tubes. Centrifuge at 15,000 rpm for five minutes at room temperature, and discard the supernatant.
- 2) Add 500µl of t-BuOH/DMSO solution, and disperse the beads. Centrifuge at 15,000 rpm for five minutes at room temperature, and discard the supernatant.
- 3) Repeat the above 2) two more times, and perform solvent displacement.
- 4) Add each reaction solution in the order as shown below, from the top solution Azide beads to the bottom Sodium ascorbate. In this case, after adding 250μM of TBTA, disperse the beads with an ultrasonic device. Then, add the remaining solutions.

Concentration	(μM)	0	5	25	125
Azide beads	(mg)	2.5	2.5	2.5	2.5
t-BuOH/DMSO	(µl)	250	240	200	0
500μM ligands	(µl)	0	5	25	125
$250 \mu M$ TBTA	(µl)	0	5	25	125
Ultrapure water	(µl)	250	240	200	0
5mM CuSO4	(µl)	0	5	25	125
5mM (+)-Sodium ascorbate	(µl)	0	5	25	125
Total	(µl)	500	500	500	500

- 5) React for 16 to 20 hours at room temperature by using a micro tube mixer.
- 6) Centrifuge at 15,000 rpm for five minutes at room temperature, and discard the supernatant.
- 7) Add 500µl of t-BuOH/DMSO/ultrapure water solution, and disperse the beads with an ultrasonic device.
- 8) Centrifuge at 15,000 rpm for five minutes at room temperature, and discard the supernatant.
- 9) Repeat the above 7) to 8) two more times. (Wash the beads with t-BuOH/DMSO/ultrapure water solution three times in total.)
- 10) Add $500\mu L$ of 50% MeOH, and disperse the beads with an ultrasonic device.
- 11) Centrifuge at 15,000 rpm for five minutes at room temperature, and discard the supernatant.
- 12) Repeat the above 10) to 11) two more times. (Wash the beads three times in total.)
- 13) Disperse the beads in 100 μL of 50% MeOH, and store at 4°C. (Concentration of ligand immobilized beads: 0.5 mg/20 μL)

Experiment Protocol 109

3. Supplements

• Beads are easily dispersed by using an ultrasonic dispersing device. But if you do not have such a device, they are dispersed by using an ultrasonic washer, or by the manual agitation. In the manual dispersion method, the bottom of a micro-tube is glided over an uneven surface (side of plastic test tube rack in this case) creating turbulence through the collisions. (see left side picture below) Please make sure to use well-constructed tubes with the caps tightly secured in order to prevent leakage/breakage. Use of cap lock is recommended in order to prevent leakage. (see right side picture below).

For more information, please visit FG beads web site and see the movie of the method.

(Please click: http://www.magneticnanoparticle.jp/en/htdocs/af-notes.html for moving pictures.)

- Recover beads dispersed in *t*-BuOH, DMSO, or 50% MeOH not by magnetic separation but by centrifugation because the magnetic separation takes a longer time.
- · Although we recommend using 50% MeOH for storing ligand immobilized beads in view of the decrease of dispersibility of beads due to immobilization of hydrophobic compounds, you can satisfactorily use ultrapure water, too.